Bustos, C., Manzur, C., Carrillo, D., Robert, F. \& Gouzerh, P. (1994a). Inorg. Chem. 33, 1427-1433.
Bustos, C., Manzur, C.. Carrillo, D., Robert. F. \& Gouzerh. P. (1994b). Inorg. Chem. 33, 4937-4944.
Bustos, C., Manzur, C., González, H., Schrebler, R., Carrillo, D., Bois, C., Jeannin, Y. \& Gouzerh, P. (1991). Inorg. Chim. Acta, 185, 2531.

Carrillo, D.. Robert, F. \& Gouzerh, P. (1992). Inorg. Chim. Acta, 197, 209-215.
Chatt. J., Pearman, A. \& Richards. R. L. (1978). J. Chem. Soc. Dalton Trans. pp. 1766-1776.
DeBord, J. R., George, T. A., Chang, Y. \& Zubieta, J. (1993). Inorg. Chem. 32, 785-786.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Henderson, R. A., Leigh, G. J. \& Pickett, C. J. (1991). J. Chem. Soc. Dalton Trans. pp. 425-430.
Li-Kao, J., Gonzáleц, O., Marieıcurrena, R., Baggio. R., Garland, M. T. \& Carrillo, D. (1995). Acta Cryst. C51, 2486-2489.

Manzur. C., Bustos, C., Carrillo, D., Boys, D. \& Hamon, J. R. (1997). Inorg. Chim. Acta, 255, 73-80.
Manzur, C., Bustos, C., Carrillo, D., Robert, F. \& Gouzerh, P. (1996). Inorg. Chim. Acta. 249, 245-250.
Manzur, C., Carrillo, D., Baggio, R. \& Garland, M. T. (1997). J. Chem. Crystallogr. 27, 339-342.
Redböll, M., Moller, E. R., Hazell, R. G. \& Jörgensen, A. (1995). Acta Chem. Scand. 49, 278-290.
Sheldrick, G. M. (1991). SHELXTL/PC. Version 4.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1991). P3/P4-PC Diffractometer Program. Version 4.27. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Vale, M. G. \& Schrock, R. (1993). Inorg. Chem. 32, 2767-2772.
Walsh, P. J., Carney, M. J. \& Bergman, R. G. (1991). J. Am. Chem. Soc. 113, 6343-6345.

Acta Cryst. (1997). C53, 1403-1405

Carbonyl(1,3-diphenyl-1,3-propanedionato$\left.O, O^{\prime}\right)($ triphenylphosphine-P)rhodium(I)

Delanie Lamprecht, ${ }^{\text {a }}$ Gert J. Lamprecht, ${ }^{\text {a }}$ J. Mattheus Botha, ${ }^{a}$ Keisuke Umakoshi ${ }^{b}$ and Yoichi Sasaki ${ }^{b}$
${ }^{\text {a }}$ Department of Chemistry, The University of the Free State, Bloemfontein 9300, South Africa, and ${ }^{b}$ Division of Chemistry, Graduate School of Science, Hokkaido University, Kita-ku, Sapporo 060, Japan. E-mail: umakoshi@science.hokudai. ac.jp

(Received 24 December 1996; accepted 19 May 1997)

Abstract

One carbonyl group in dicarbonyl(1,3-diphenyl-1,3-propanedionato- O, O^{\prime})rhodium(I) was substituted by triphenylphosphine to yield the title compound, [Rh$\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)(\mathrm{CO})$, which has a square-planar

geometry about the Rh atom. There are two crystallographically independent molecules in the asymmetric unit.

Comment

The title compound, $\left[\mathrm{Rh}(\mathrm{DBM})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right](\mathrm{DBM}$ is the 1,3-diphenyl-1,3-propanedionate anion), (I), was prepared and its crystal structure solved as part of our study of the relationship between the chemical oxidation of $R h^{1}$ to $\mathrm{Rh}^{\text {III }}$ in these compounds by iodomethane, and the electrochemical oxidation by means of cyclic voltametry. To minimize the effect of different groups on the monocharged β-diketonate ligand, we have chosen the symmetrical β-diketone 1,3-diphenyl-1,3-propandione.

(I)

The asymmetric unit consists of two crystallographically independent molecules of the title compound. These molecules form a very closely centrosymmetric pair, but this is not a crystallographic inversion center. One of the molecules of (I) is illustrated in Fig. 1. The square-planar coordination of the Rh atom is clear from the bond angles in Table 1. The partial overlapping of the chelate ring of one molecule with a phenyl ring of the other molecule can be attributed to $\pi-\pi$ interactions by considering the intermolecular distances in Table 2.

The Rhl and Rh2 atoms lie 0.012 and $-0.015 \AA$ from their respective coordination planes. The distances $\mathrm{Rhl}-\mathrm{O} 2 \quad[2.081(9) \AA]$ and $\mathrm{Rh} 2-\mathrm{O} 5$ [2.072 (7) \AA] when compared with Rh1-Ol [2.038(10) \AA] and Rh2-O4 [2.040(7) A] illustrate clearly the larger trans influence of triphenylphosphine compared with a carbonyl group. The same tendency with similar bond lengths was found in structures of the following compounds which also contain symmetrical β-diketones: $\left[\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$ (acac is acetylacetonate) (Leipoldt, Basson, Bok \& Gerber, 1978) and $\left[\mathrm{Rh}(\mathrm{TROP})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]$ (TROP is tropolonate) (Leipoldt, Bok, Basson \& Meyer, 1980). In a previous paper (Graham, Lamprecht, Potgieter, Roodt \& Leipoldt, 1991), the authors claimed that the Rh—P distance could be used to estimate the relative trans influence of different donor atoms in the chelate rings. In this case,

Fig. 1. The structure of one of the two independent molecules with the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
however, the differences between Rh1—P1 [2.237 (7) Å] and Rh2--P2 [2.245 (3) A] may be ascribed to a packing effect.

Experimental

The $\mathrm{Rh}^{1} \beta$-diketonato complex $\left[\mathrm{Rh}(\mathrm{DBM})(\mathrm{CO})_{2}\right]$ was prepared from $\mathrm{RhCl}_{3} .3 \mathrm{H}_{2} \mathrm{O}, N, N$-dimethylformamide and 1,3-diphenyl-1,3-propandione by previously described methods (Leipoldt \& Grobler, 1982; Varshavskii \& Cherkasova, 1967). The title compound was prepared by dissolving $\left[\operatorname{Rh}(\mathrm{DBM})(\mathrm{CO})_{2}\right]$ in the minimum quantity of acetone at $c a$ 313 K and an equivalent amount of triphenylphosphine was added. Upon cooling, the title compound precipitated and was recrystallized from acetone.

Crystal data

$\left[\mathrm{Rh}\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)-\right.$
$\quad(\mathrm{CO})]$
$M_{r}=616.46$
Monoclinic
$C c$
$a=30.404(4) \AA$
$b=10.276(1) \AA$
$c=18.742(3) \AA$
$\beta=108.92(1)^{\circ}$
$V=5539(1) \AA^{3}$
$Z=8$
$D_{x}=1.478 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 26 reflections
$\theta=15.5-17.5^{\circ}$
$\mu=0.695 \mathrm{~mm}^{-1}$
$T=163 \mathrm{~K}$
Rhombic
$0.78 \times 0.45 \times 0.20 \mathrm{~mm}$
Yellow

Data collection

Mac Science MXC18
diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
ψ scans (North, Phillips
\& Mathews, 1968)
$T_{\text {min }}=0.781, T_{\text {max }}=0.870$
7056 measured reflections
6231 independent reflections

5972 reflections with

$$
I>2 \sigma(I)
$$

$R_{\text {int }}=0.015$
$\theta_{\text {max }}=26.43^{\circ}$
$h=-39 \rightarrow 37$
$k=-13 \rightarrow 0$
$l=0 \rightarrow 24$
3 standard reflections every 150 reflections intensity decay: 9.5\%

Refinement

Refinement on F
$w^{\prime}=1 /\left[\sigma^{2}(F)+0.001 F^{2}\right]$
$R=0.035$
$w R=0.043$
$S=2.564$
5972 reflections
701 parameters
H atoms riding with $U(\mathrm{H})=$ $1.3 U_{\mathrm{eq}}(\mathrm{C})$
$(\Delta / \sigma)_{\max }=0.023$
$\Delta \rho_{\text {max }}=0.55 \mathrm{e}_{\mathrm{A}} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.84 \mathrm{e}^{-3}$
Extinction correction: none Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

Rhi-PI	2.237 (7)	Rh2-O4	2.040 (7)
Rhi-O1	2.038 (10)	Rh2-05	2.072 (7)
Rh1-02	2.081 (9)	Rh2-C8	1.794 (10)
Rhl-C4	1.812 (13)	$\mathrm{O} 3-\mathrm{C4}$	1.154 (13)
Rh2-P2	2.245 (3)	O6--C8	1.161 (12)
$\mathrm{Pl}-\mathrm{Rhl}$-O1	87.7 (3)	$\mathrm{P} 2-\mathrm{Rh} 2-\mathrm{O} 4$	87.8 (2)
$\mathrm{Pl}-\mathrm{RhI}-\mathrm{O} 2$	175.2 (4)	$\mathrm{P} 2-\mathrm{Rh} 2-\mathrm{O} 5$	174.0 (2)
$\mathrm{Pl}-\mathrm{Rhl}-\mathrm{C} 4$	91.1 (5)	$\mathrm{P} 2-\mathrm{Rh} 2-\mathrm{C} 8$	91.8 (3)
$\mathrm{Ol}-\mathrm{Rhl}-\mathrm{O} 2$	88.5 (5)	O4-Rh2-O5	89.1 (3)
$\mathrm{Ol}-\mathrm{Rhl}-\mathrm{C} 4$	175.3 (6)	O4-Rh2-C8	172.6 (4)
$\mathrm{O} 2-\mathrm{Rhl}-\mathrm{C} 4$	92.9 (5)	O5-Rh2-C8	91.9 (4)
Table 2. Contact distances (\AA)			
C1...C66	3.39 (2)	C5. . Cl 16	3.39 (1)
C2...C65	3.57 (2)	C6..C15	3.56 (1)
C2...C66	3.56 (2)	C6...C16	3.57 (1)
C3...C64	3.55 (2)	C7..C14	3.44 (1)
C3...C65	3.54 (1)	C7...C15	3.54 (1)

The systematic absences ($h k l, h+k=2 n+1 ; h 0 l, l=2 n+1$) of (I) agree with both $C 2 / c$ and $C c$. The absence of Patterson vectors related to twofold rotation and screw axes, and the successful structural solution and refinement showed that the correct space group of (I) is Cc. The structure was solved by direct methods.

Data collection: MXC Diffractometer Control Software (MAC Science, 1989). Cell refinement: MXC Diffractometer Control Software. Data reduction: CRYSTAN (Edwards, Gilmore, Mackay \& Stewart, 1995). Program(s) used to solve structure: SIR92 (Altomare et al., 1994). Program(s) used to refine structure: CRYSTAN. Molecular graphics: CRYSTAN. Software used to prepare material for publication: CRYSTAN and BOND (Yoshioka \& Hirotsu, 1980).

The authors are grateful to the Ministry of Education, Science and Culture, Japan, for financial support on International Scientific Research Program (No. 08044046).

[^0]
References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Edwards, C., Gilmore, C. J., Mackay, S. \& Stewart, N. (1995). CRYSTAN 6.3. A Computer Program for the Solution and Refinement of Crystal Structures. Mac Science, Japan.
Graham, D. E., Lamprecht, G. J., Potgieter, I. M., Roodt, A. \& Leipoldt, J. G. (1991). Trans. Met. Chem. 16, 193-195.
Lcipoldt, J. G., Basson, S. S., Bok, L. D. C. \& Gerber, T. I. A. (1978). Inorg. Chim. Acta, 26, L35-L37.
Leipoldt, J. G., Bok, L. D. C., Basson, S. S. \& Meyer, H. (1980). Inorg. Chim. Acta, 42, 105-108.
Leipoldt, J. G. \& Grobler, E. C. (1982). Inorg. Chim. Acta, 60, 141144.

MAC Science (1989). MXC Diffractometer Control Sofiware. MAC Science, Japan.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Varshavskii, Yu. S. \& Cherkasova, T. G. (1967). Russ. J. Inorg. Chem. 12, 894.
Yoshioka, H. \& Hirotsu, K. (1980). BOND. Osaka City University, Osaka, Japan.

Acta Cryst. (1997). C53, 1405-1407

trans-[Bis-2,6-(2-benzimidazolyl- κN^{2})-pyridine- κN]nitrobis(triphenylphosphineP)ruthenium(II) Perchlorate Ethanol Solvate

Jong Wan Lim, Hwan Jin Yeo and Jong Hwa Jeong

Department of Chemistry, Kyungpook National University, Taegu, 702-701, Korea. E-mail: jeongjh@bh.kyungpook.ac.kr
(Received 2 January 1997; accepted 22 April 1997)

Abstract

In the title compound, $\left[\mathrm{Ru}\left(\mathrm{NO}_{2}\right)\left(\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{5}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]-$ $\mathrm{ClO}_{4} \cdot \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$, the two phosphine ligands are in trans positions. The Ru atom and imidazolylpyridine moiety are almost coplanar, with the fused ring of the imidazolyl groups somewhat bent from the plane due to the steric hindrance of the phosphine phenyl groups. The nitro ligand is coordinated so that the NO_{2} group is rotated $40.5(1)^{\circ}$ from the imidazolylpyridine plane.

Comment

There has been considerable interest in transition metal complexes containing a nitro ligand because of their capability to transfer oxygen to a number of organic and inorganic substrates (Leising \& Takeuchi, 1987). Nitroruthenium complexes involving terpyridine (terpy) or bis(pyrazolyl)pyridine have been studied with respect to their reactivity and the coordination environment
around the central metal atom (Bailey \& Drago, 1987; Bessel, See, Jameson, Churchill \& Takeuchi, 1993; Leising, Kubow, Churchill, Buttrey, Ziller \& Takeuchi, 1990). The orientation of the NO_{2} plane is dependent on the meridional ligands. For example, the angles between the NO_{2} and meridional coordination planes are almost 90° in the Ru -nitro complex containing 2,6-bis(3,5-dimethylpyrazol-1-yl)pyridine (Bessel, See, Jameson, Churchill \& Takeuchi, 1993) and almost 0° in the complex containing 2,6-bis(pyrazol-1-yl)pyridine (Leising, Kubow, Churchill, Buttrey, Ziller \& Takeuchi, 1990).

We report here the orientation of the NO_{2} ligand in the title compound, (I), in which it is bound to the metal atom. The Ru atom is also coordinated by a pyridine ring carrying two benzimidazolyl groups rather

(I)
than substituted imidazole rings. An ORTEPII (Johnson, 1976) drawing of the molecule is shown in Fig. 1. The structure reveals that a bis(2-benzimidazolyl)pyridine (BIP) moiety, an NO_{2} and two triphenylphosphine $\left(\mathrm{PPh}_{3}\right)$ groups are bound to the Ru atom, with ClO_{4}^{-}as anion. The two phosphine ligands are in an almost trans arrangement, with a $\mathrm{P} 1-\mathrm{Ru}-\mathrm{P} 2$ angle of $178.79(8)^{\circ}$.

Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 40% probability level.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: CFI166). Services for accessing these data are described at the back of the journal.

